Skip to main content
Domain - domain - Node documentation
class Domain
extends EventEmitter

Usage in Deno

import { Domain } from "node:domain";
<div class="alert alert-warning"><div><svg xmlns="http://www.w3.org/2000/svg" width="14" height="14" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"> <path stroke="none" d="M0 0h24v24H0z" fill="none" /> <path d="M12 9v4" /> <path d="M10.363 3.591l-8.106 13.534a1.914 1.914 0 0 0 1.636 2.871h16.214a1.914 1.914 0 0 0 1.636 -2.87l-8.106 -13.536a1.914 1.914 0 0 0 -3.274 0z" /> <path d="M12 16h.01" /> </svg> Deno compatibility</div><div><p> This symbol is a non-functional stub.</p> </div></div>

The Domain class encapsulates the functionality of routing errors and uncaught exceptions to the active Domain object.

To handle the errors that it catches, listen to its 'error' event.

Properties

members: Array<EventEmitter | Timer>

An array of timers and event emitters that have been explicitly added to the domain.

Methods

add(emitter: EventEmitter | Timer): void

Explicitly adds an emitter to the domain. If any event handlers called by the emitter throw an error, or if the emitter emits an 'error' event, it will be routed to the domain's 'error' event, just like with implicit binding.

This also works with timers that are returned from setInterval() and setTimeout(). If their callback function throws, it will be caught by the domain 'error' handler.

If the Timer or EventEmitter was already bound to a domain, it is removed from that one, and bound to this one instead.

bind<T extends Function>(callback: T): T

The returned function will be a wrapper around the supplied callback function. When the returned function is called, any errors that are thrown will be routed to the domain's 'error' event.

const d = domain.create();

function readSomeFile(filename, cb) {
  fs.readFile(filename, 'utf8', d.bind((er, data) => {
    // If this throws, it will also be passed to the domain.
    return cb(er, data ? JSON.parse(data) : null);
  }));
}

d.on('error', (er) => {
  // An error occurred somewhere. If we throw it now, it will crash the program
  // with the normal line number and stack message.
});
enter(): void

The enter() method is plumbing used by the run(), bind(), and intercept() methods to set the active domain. It sets domain.active and process.domain to the domain, and implicitly pushes the domain onto the domain stack managed by the domain module (see exit for details on the domain stack). The call to enter() delimits the beginning of a chain of asynchronous calls and I/O operations bound to a domain.

Calling enter() changes only the active domain, and does not alter the domain itself. enter() and exit() can be called an arbitrary number of times on a single domain.

exit(): void

The exit() method exits the current domain, popping it off the domain stack. Any time execution is going to switch to the context of a different chain of asynchronous calls, it's important to ensure that the current domain is exited. The call to exit() delimits either the end of or an interruption to the chain of asynchronous calls and I/O operations bound to a domain.

If there are multiple, nested domains bound to the current execution context, exit() will exit any domains nested within this domain.

Calling exit() changes only the active domain, and does not alter the domain itself. enter() and exit() can be called an arbitrary number of times on a single domain.

intercept<T extends Function>(callback: T): T

This method is almost identical to bind. However, in addition to catching thrown errors, it will also intercept Error objects sent as the first argument to the function.

In this way, the common if (err) return callback(err); pattern can be replaced with a single error handler in a single place.

const d = domain.create();

function readSomeFile(filename, cb) {
  fs.readFile(filename, 'utf8', d.intercept((data) => {
    // Note, the first argument is never passed to the
    // callback since it is assumed to be the 'Error' argument
    // and thus intercepted by the domain.

    // If this throws, it will also be passed to the domain
    // so the error-handling logic can be moved to the 'error'
    // event on the domain instead of being repeated throughout
    // the program.
    return cb(null, JSON.parse(data));
  }));
}

d.on('error', (er) => {
  // An error occurred somewhere. If we throw it now, it will crash the program
  // with the normal line number and stack message.
});
remove(emitter: EventEmitter | Timer): void

The opposite of add. Removes domain handling from the specified emitter.

run<T>(
fn: (...args: any[]) => T,
...args: any[],
): T

Run the supplied function in the context of the domain, implicitly binding all event emitters, timers, and low-level requests that are created in that context. Optionally, arguments can be passed to the function.

This is the most basic way to use a domain.

import domain from 'node:domain';
import fs from 'node:fs';
const d = domain.create();
d.on('error', (er) => {
  console.error('Caught error!', er);
});
d.run(() => {
  process.nextTick(() => {
    setTimeout(() => { // Simulating some various async stuff
      fs.open('non-existent file', 'r', (er, fd) => {
        if (er) throw er;
        // proceed...
      });
    }, 100);
  });
});

In this example, the d.on('error') handler will be triggered, rather than crashing the program.